RFP – GH4196:
ENVIRONMENTAL BUSINESS CASE DEVELOPMENT EXPERT

<table>
<thead>
<tr>
<th>CONSULTATION</th>
<th>Environmental Business Case Development Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION</td>
<td>Nawuni Sub-Catchment of the White Volta River Basin, Northern Region Ghana</td>
</tr>
<tr>
<td>PROVISIONAL START DATE</td>
<td>July 2022</td>
</tr>
<tr>
<td>ESTIMATED DURATION</td>
<td>3 Months</td>
</tr>
<tr>
<td>QUESTIONS END</td>
<td>May 23rd, 2022</td>
</tr>
<tr>
<td>SUBMISSIONS DUE</td>
<td>June 3rd, 2022</td>
</tr>
</tbody>
</table>

BACKGROUND
Catholic Relief Services (CRS) in partnership with The Nature Conservancy (TNC), Ghana Water Company Limited (GWCL), Water Resources Commission and other key stakeholders have initiated a programme aimed at finding lasting solutions to the water supply challenges in Tamale and surrounding communities by promoting collective investments for source water protection at the Nawuni Sub-catchment of the White Volta River through nature-based solutions (NBS). More Specifically, CRS together with partners aim to setup a Water Fund for Tamale that seeks to create a dependable funding stream for strategic budgeting of nature-based restoration projects and financing for conservation needs in the watershed to meet the water quantity and quality goals, and ecosystem protection in the White Volta Basin. This would be in compliance with the precautionary principle in the National Water Policy (NWP) (2007) that seeks to minimize activities that have the potential to negatively affect the integrity of all water resources.

Currently, the Steering Committee of the Tamale Water has been established with membership from key sector institutions including the Ghana’s Ministry of Sanitation and Water Resources, Water Resources Commission and Ghana Water Company Limited. The Steering Committee is serving as the decision-making body to help guide the next phase of the Water Fund project to achieve its goals.

However, in Tamale, as elsewhere, the lack of information of possible Nature Based Solutions (NBS) and their associated costs for the Nawuni sub catchment and impact on beneficiaries’ needs are the principal barriers for mainstreaming these investments (UNEP, 2014).

The Study Area
Tamale, the capital town of the Northern Region of Ghana with population of 671,812 (2021 pop. est.)\(^1\), is confronted with various water security risks including water supply scarcities and flooding. Due to its central location, the city serves as a hub for all administrative and commercial activities in northern Ghana, doubling as the political, economic and financial capital of the hitherto three northern regions (now 5 northern regions). The city is remarkably flat and gently rolling with topographic elevation ranging from 120 m to 185 m above mean sea level. The area lies in the tropical continental or interior savannah climatic zone, which is much drier than other areas of Ghana, due to its proximity to the Sahel. It experiences a single rainfall season between May and September, characterized by high surface runoff and sediment load. The heaviest rainfall occurs in August, and the mean annual rainfall is 1,050 mm.

Mean monthly temperatures vary from 36°C in March/April to 27°C in August. Relative humidity is high during the rainy season (65-85%) but may fall to as low as 20% during the dry season.

Tamale falls in the White Volta sub-basin within the Volta River catchment area in Ghana. The White Volta Basin is made up of 9 sub-basins with a total surface area of approximately 50,000 square kilometers. These sub-basins directly contribute to flows into the Ghana Water Company Limited raw water abstraction point, hence green infrastructure investment in them when correctly prioritized are most likely to have success and improve water supply for the Tamale city and environs.

The entire Middle White Sub-Basin is proposed as the priority for the assessment (study) as it is the closest to and host the GWCL Nawuni intake point and treatment plant (Dalun WTP) (Refer to figure below). Additionally, interventions should begin along the course of the river within the Middle white sub-basin.

![Figure 1: The White Volta Basin](image)

Rated as one of the fastest growing cities in West Africa, population growth, as well as climate change and variability, are causing severe deforestation and general environmental degradation, which are impacting negatively on the water supply situation and biological diversity in the White Volta basin.

Recent studies (including the Tamale Water Fund feasibility report) showed a systematic transformation to a more variably disturbed system in land cover and land use dynamics of the floodplain. This
transformation was largely linked to human-led activities, namely, expansion of agricultural activities, mining etc. fundamentally driven by population pressure and changes in climate.

Considering the socio-economic importance of the White Volta River in the context of being the only fresh water source for the city and its environs, there is an urgent need to address the deforestation and degradation (including sand mining activities in the Nawuni sub-catchment) to safeguard water supply for the city to meet the water quantity and quality goals and ecosystem protection for current and future generations. To achieve this, effective mobilization and collaboration of stakeholders and partners are needed, including upstream and downstream communities to identify, understand and resolve conservation challenges that work within the local economy, as well as strengthening of governance and structures. This comes with investment needs which must be met through a well-structured collaboration of different stakeholders with interest in the sector.

CRS, Ministry of Sanitation and Water Resources (MSWR), Ghana Water Company Limited (GWCL), Water Resources Commission (WRC), Minerals Commission (MC), Environmental Protection Agency (EPA), Forestry Commission (FC), Tamale Metropolitan Assembly (TaMA), and Northern Regional Coordinating Council (NRCC), has determined a need for cost-benefit analysis of possible NBS investment portfolios. CRS seeks to hire a consultant to complete this “Business Case” analysis. The analysis should include the following components and be based on an analytical framework developed by TNC (Appendix, Figure 1).

Section A: Tamale Water Fund Business Case components – Phase 1
1. Initial Assessment
The consultant will undertake the following;
 A. Conduct literature review on river sand mining (impact, sustainable management options, alternatives, etc.) with the aim of addressing threats from poorly managed river sand mining relevant to the context of the Tamale Water Fund area.
 B. Assess current and projected catchment degradation of the Nawuni sub-catchment of the White Volta Basin and the resulting effect on ecosystem functions related to water supply in the absence of a Water Fund (“business-as-usual [BAU] scenario”).
 C. In collaboration with key stakeholders, refine, assess and propose (prioritize) a set of conservation measures (including sustainable mining options) to address water supply challenges in Tamale and biodiversity within the sub-catchment (“Conservation scenario”).
 D. Compare the change in ecosystem function and resulting priority ecosystem services flows between “business as usual” and “conservation” scenarios.

2. Business as Usual (BaU) scenario
A. **Land use/land cover (LULC)**
 b. Analyze patterns and rates of change in land use and land cover (LULC) change compared with a recent reference time period (1991-2021), depending upon satellite image availability across the White Volta Basin including buffer area and nearby urbanized areas. The scale of the analysis will be determined by the size of observed actual LULC changes during the reference period. Special focus will be on the Middle White Volta sub-basin (i.e. within 80 Km stretch of the river upstream the Nawuni abstraction point).

 c. Project future LULC changes through the year 2030, based on;
i. extrapolation of observed changes since the reference period and
ii. any expected future changes in relevant laws and regulations or their enforcement.

Depending on the complexity of LULC change and the importance of adequately capturing the locations of future LULC changes for purposes of hydrologic modelling (for analysis of impacts of LULC change on water yield or its timing or on water quality), this will require remote sensing analysis, and may or may not require a formal modeling approach using specialized software (e.g., Land Change Modeling Specialist [LCM]).

B. **Priority ecosystem services flows**

 a. **Identify a hydrologic modeling approach suitable to quantifying the effect of LULC changes on priority ecosystem services flows.**

 Water supply (decreasing dry season water flows, siltation and high turbidity at the intake point—primarily due to sand mining activities). The modeling approach is determined by the temporal (annual, monthly, daily, or hourly) and spatial resolution (at specific points in the catchment) of model outputs required for the analysis of priority ecosystem services flows, as well as by model data needs and the extent to which they can be satisfied with available data or data that can be generated through field experiment during the duration of this project.

 b. **Build, calibrate and test the hydrologic model**

 Apply established minimum best-practice guidelines for hydrologic model development and evaluation (e.g., split-sample approach). Model performance on key outputs (e.g., discharge; TSS or total sediment load) should meet established criteria for at least fair model performance to ensure credibility of the overall ROI analysis.

 Model outputs must be generated for the specific location (i.e. the intake point at Nawuni) at which ecosystem services are used (“beneficiary location”) and hence generate economic benefits, and at the required temporal resolution to assess benefits (see point a) above).

 I. **Suspended sediment and turbidity in the river during periods of concern**

 II. **Water supply during periods of concern**

3. Conservation scenario

 A. **Evaluate potential conservation interventions**

 The consultant shall review feasibility studies on Tamale’s water security and biodiversity challenges in the White Volta Basin and interact with key stakeholders to validate proposed conservation interventions. The consultant shall also propose applicable additional conservation interventions based on assessments. These could include interventions to complement NBS interventions to achieve the goals of the water fund.

 The consultant shall provide details on the extent of all conservation interventions proposed or validated.

 Illustrative list of conservation interventions

 1. Reclamation of sand mining sites on the embankment: extent of intervention
2. Riparian management such as vegetation buffer zones conservation/restoration in the river and along riverbanks (including managing areas with steep slopes): extent of intervention
3. Reforestation, afforestation and forest conservation of degraded areas within the forest edges: extent of intervention
4. Conservation Agriculture /Agroforestry adoption: extent of intervention
5. Sustainable sand mining practices (Regulated in-stream river sand mining, on-shore river sand mining etc.): extent of intervention
6. Wetland restoration/conservation: extent of intervention

For the analysis of each conservation intervention, the following should also be considered:
1. Specific spatial maps for ‘opportunity areas’.

Prior to step B below, The consultant will meet with CRS and key stakeholders in Tamale including the Steering Committee of the Tamale Water Fund to share the proposed list of conservation interventions for validation as well as to understand for each option, whether currently stakeholders / service providers exist and are performing such activities in the catchment/existing or there is the need for setting up the practice from scratch.

B. Identify and Propose Conservation scenario intervention portfolio
Using the integrated spatial model and subject to identified feasibility constraints (legal, political-institutional, social), identify priority intervention and sites – those that, compared to the BAU scenario, would yield the highest avoided loss (or largest gain) in priority ecosystem services per extent of intervention and estimated / projected cost.

C. Run the integrated spatial models on the Conservation scenario to generate outputs of the priority ecosystem services flows
 a. Suspended sediment and turbidity in the river during periods of concern
 b. Water supply during periods of concern

Compare outputs with those under the BAU scenario to quantify changes in water supply and sediment between the two scenarios.

Section B: Consultant Deliverables
The consultant will provide the following deliverables produced from the components of a Business Case described in Section A. The deliverables will require the approval of Catholic Relief Services, The Nature Conservancy and the Steering Committee of the Tamale Water Fund. As such, a consultation meeting with will be required upon first showing of each milestone noted in the timeline. In some cases, these consultations will convene external strategic partners. The review process seeks to assure the quality of the products for the satisfaction of the final beneficiary.

Table 1, below, references the deliverables and timeline for receipt, review and adjustment. All days provided refer to working days (Monday – Friday, excluding holidays).
<table>
<thead>
<tr>
<th>Product</th>
<th>First Showing</th>
<th>Delivery of Draft</th>
<th>Review Period</th>
<th>Adjustment Period</th>
<th>Final Delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>First product: Report on literature review on river sand mining.</td>
<td>At day 5</td>
<td>At day 7</td>
<td>3 days</td>
<td>2 days</td>
<td>At day 12 July 13, 2022</td>
</tr>
<tr>
<td>Description: Present report reviewing river sand mining i.e. impact, sustainable management options, alternatives, etc.) with the aim of addressing threats from poorly managed river sand mining</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second product: Presentation, LULC model results and underlying assumptions</td>
<td>At day 12</td>
<td>At day 15</td>
<td>5 days</td>
<td>2 days</td>
<td>At day 22 July 24, 2022</td>
</tr>
<tr>
<td>Description: present the land use land cover change results and projections to 2030 along with the underlying assumptions used to create the model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third product: Presentation, Proposed hydrologic, hydraulic, and morphologic modeling approach</td>
<td>At day 22</td>
<td>At day 27</td>
<td>5 days</td>
<td>2 days</td>
<td>At day 34 August 12, 2022</td>
</tr>
<tr>
<td>Description: present the proposed approaches used for the hydrologic, hydraulic, and morphologic modeling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth product: Document hydrologic, hydraulic, and morphologic model outputs for BaU Scenario</td>
<td>At day 34</td>
<td>At day 37</td>
<td>5 days</td>
<td>2 days</td>
<td>At day 44 August 26, 2022</td>
</tr>
<tr>
<td>Description: hydrologic, hydraulic, and morphologic model on the BaU scenario to generate outputs of target service flows; BaU+ target outputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fifth product: Document, conservation intervention portfolio</td>
<td>At day 44</td>
<td>At day 47</td>
<td>5 days</td>
<td>2 days</td>
<td>At day 54 September 9, 2022</td>
</tr>
<tr>
<td>Description: With input from CRS and TNC, produce a document listing the conservation intervention portfolio – that will be used to generate a model of the conservation scenario</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sixth product: Document, conservation scenario model & difference from BaU intervention portfolio, generate</td>
<td>At day 54</td>
<td>At day 57</td>
<td>5 days</td>
<td>2 days</td>
<td>At day 64 September 21, 2022</td>
</tr>
</tbody>
</table>
conservation scenario model output for priority ecosystem service flows and quantify changes b/w BaU and the conservation scenario;

Seventh product: Document, final technical report

Description: report should be organized by components outlined in Section A, summarizing methodology & findings. Draft should be provided in editable format, e.g. Microsoft Word document.

Eighth product: Document, final executive summary

Description: executive summary should summarize methodology and main findings of the Business Case, including co-benefits. Final provided in editable format, e.g. Microsoft Word document.

Eighth product: Hi-res JPEG & native files, visuals

Description: all final and native design files should be uploaded to the appropriate Box folder. TNC will pass this box folder along to the designer for the final business case report.

Nineth product: Geodatabase

Description: contains all spatial data used, the inputs of the models and the resulting products. Must follow the technical criteria specified by TNC (Datum, Projection, Metadata).

Section C: Additional information

1. **Reporting**

 The consultant will use the Ghana WASH Program Manager as their CRS point-of-contact. The Head of Programming for the Catholic Relief Services, Regional technical advisor for Water, Environment and Sanitation will provide technical guidance as required.

 Meetings and surveys with key informants will take place in Tamale and minimal engagements in Accra, with trips to the field (sites within the White Volta River Basin). CRS will provide round-trip flights in economy, lodging and logistic support for the time spent in Ghana. However, the consultant is responsible for own vaccinations, travel insurance and medevac coverage where applicable.
Section D: Evaluation Criteria

1. Qualifications
The consultant (or key members of the team) should have the following minimum qualifications or competencies.

 A. Master’s degree in Environmental Economics, Business Economics, Environmental Engineering, or related field.
 B. Expertise in the use of GIS and hydrologic and Morphological modelling
 C. Expertise in river modelling to define, analyze, and communicate the impact of human activities (i.e. sand mining, farming etc.) and proposed interventions on the river.
 D. Expertise and knowledge in conservation intervention costing
 E. Knowledge of Sand mining policies
 F. Knowledge of Instream and off-channel sand extraction methods/technologies
 G. Knowledge of Sand extraction management guidelines
 H. Experience conducting Return on Investment analysis
 I. Experience working with a broad range of stakeholders
 J. Exceptional writer with expert command of English grammar
 K. Knowledge and understanding of the White Volta Basin and environs.
 L. Experience / extensive knowledge in natural resources management would also be added advantage.

2. Technical Evaluation:
Bids that will be evaluated technically according to the criteria outlined below;

<table>
<thead>
<tr>
<th>Qualification of the consultant and team</th>
<th>24.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous experience in similar works or services, with proof of award and/or completion (completion certificates / award letters / agreement / interim payment certificates / reference letters)</td>
<td>21%</td>
</tr>
<tr>
<td>Technical Soundness of Methodology / Approach (with strategies for deploying team, stakeholder engagements, review meetings etc.)</td>
<td>17.5%</td>
</tr>
<tr>
<td>Proposed Detailed Work Plan to ensure timely execution of assignment</td>
<td>7%</td>
</tr>
</tbody>
</table>

Any bidder who scores lower than 52.5% out of the maximum 70% under the technical valuation shall not have their financial proposal considered in part 2 of the evaluation (Final Decision will be made by the Evaluation Committee).

3. Financial Evaluation:
The Technical Proposal of all bidders that score 75% or more shall have their financial proposals evaluated financially.
The following shall be examined.

 A. Completed stamped and signed letter of Bid (Sample Attached)
 B. Completed stamped and signed financial proposal (arithmetically checked)
 C. The tender prices shall be corrected and adjusted accordingly
D. This shall be based on the reasonability of the least cost shall be determined before proposing for award. CRS however reserves the rights to consider the least cost as the winning bid. A value of 30% has been assigned to the Financial Evaluation.

NB: A bid shall be eliminated if any false or deliberately misleading information is given in relation to the tenderers qualifications, capacity, current or past references, or in any of the documents submitted by the bidder in any lot.

Section E: Terms of Payment
The Consultant’s remuneration shall be paid in three (3) instalments as follows:

i. First Instalment Payment: Mobilization Payment
A payment of 20% of the total contract will be paid as mobilization fee upon
 A. Signing of contract
 B. Submission of request letter
 C. Completion of inception meeting and submission of an inception report
 D. Submission of revised detailed workplan.

ii. Second Instalment Payment:
A second payment of 40% of the total contract sum shall be paid after completion and submission of key deliverables as listed below;
 A. Final report on literature review on river sand mining.
 B. Presentation, LULC model results and underlying assumptions
 C. Presentation, Proposed hydrologic, hydraulic, and morphologic modeling approach
 D. Document hydrologic, hydraulic, and morphologic model outputs for BaU Scenario
 E. Document, conservation intervention portfolio
 F. Document, conservation scenario model & difference from BaU
 G. Draft technical report and executive summary

iii. 3rd Instalment Payment:
A third (final) payment of 40% of the total contract sum shall be paid after completion and submission of key deliverables as listed below;
 A. Final technical report
 B. Final executive summary
 C. Hi-res JPEG & native files, visuals
 D. Geodatabase

Section F: Q&A Opportunity
Prospective bidders may submit any clarification questions to Chris Mericle at chris.mericle@crs.org, by 3:00 PM EDT (GMT-4) May 23rd, 2022. Responses will be provided to any known prospective bidders on May 27th, 2022.
Section G: Proposal Deadline

All proposals must be received by Chris Mericle at chris.mericle@crs.org no later than June 3rd, 2022 at 3:00 PM EDT (GMT-4) for electronic submission. The solicitation name “GH4196: Environmental Business Case Development Expert” must be included in the subject line.

Section H: APPENDIX

1. ROI FRAMEWORK

<table>
<thead>
<tr>
<th>ROI FRAMEWORK</th>
<th>ANALYSES</th>
<th>KEY OUTPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention</td>
<td>Empirical observations; land cover change analysis and modeling</td>
<td>Ecosystem services production function</td>
</tr>
<tr>
<td>Ecosystem Structure</td>
<td>Hydrologic analysis</td>
<td></td>
</tr>
<tr>
<td>(vegetation, soils, slope)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecosystem Function</td>
<td>Empirical analysis of avoided/reduced CapEX and OpEX</td>
<td>Benefit production function</td>
</tr>
<tr>
<td>Ecosystem Service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benefits</td>
<td>Economic valuation</td>
<td>Return on investment</td>
</tr>
<tr>
<td>Values</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. ROI framework for GI assessments (adapted from Kroeger et al., 2017)

2. Phases of Water Fund Development

Water Funds are organizations that design and promote financial and governance mechanisms, articulating public, private and civil society stakeholders with the goal of contributing to water security and the sustainable management of a certain basin. Water Funds help strengthen the integrated management of water basins and the management of water resources, through the funding of conservation actions in the long term, such as reforestation, better agricultural and livestock practices, the protection of riverside areas, education, control and monitoring, studies relevant to water security and other actions. Furthermore, Water Funds provide useful tools to plan and identify solutions to tackle climate change.

The general phases of the Water Fund approach are:

A. **Feasibility.** This phase assesses the eligibility of an area for a Water Fund by quickly and efficiently determining if there are water security challenges in a certain area or region, as well as the potential for a Water Fund to help address these challenges. If this potential exists, at this stage, feasibility is assessed (understanding the situation more deeply) and, in general, how a Water Fund could make a positive contribution to Water Security in a certain area/region is determined.

B. **Design.** In this phase, a Water Fund is designed to be used as a platform for regional collective action, where stakeholders from all sectors can gather, coordinate and collaborate to help improve water security through a systemic change based on science. The two main objectives of this phase are:
a. Having a convincing and actionable Strategic Plan that articulates how the Water Fund will contribute to improving water security in the region;
b. Having leaders (Director, Council/Trustees and advisors of the Water Fund) committed to the strategy and plans for the Water Fund, with sufficient support from critical/priority stakeholders, donors/investors, and resources and/or commitments to move the Water Fund towards the Creation and Operational phases.

C. **Creation.** The Water Fund is prepared for operation and the institution is officially launched.

D. **Operation.** An operational Water Fund seeks stability in this phase, by developing/implementing a comprehensive work plan that guides the systematic execution of activities, measurement, assessment and communication of progress (towards predefined objectives for the Water Fund) and continuous improvement through corrective actions, refinements and innovation.

E. **Consolidation - Maturity.** This fifth phase is a continuation of the previous one, with a focus on ensuring the long-term viability of the Water Fund to create a lasting and significant impact with a positive contribution to water security.

3. Map of White Volta Basin showing sub-basins

![Map of White Volta Basin showing sub-basins](image)

Figure 2. Map of the White Volta Basin showing Middle White Volta sub-basin for possible NBS investments for improvement in water supply at Nawuni GWCL water abstraction point.

3. Land use changes within the middle white volta basin
Table 2. Summarized Monthly Consultant deliverables and timeline of production.

<table>
<thead>
<tr>
<th>Product (Deliverable)</th>
<th>July</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
</tr>
</thead>
<tbody>
<tr>
<td>First product: Report on literature review on river sand mining</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second product: Presentation, LULC model results and underlying assumptions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third product: Presentation, Proposed hydrologic modeling approach</td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Fourth product: Document hydrologic, hydraulic, and morphologic model outputs for BaU Scenario</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Fifth product: Document, conservation intervention portfolio</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Sixth product: Document, conservation scenario model & difference from BaU</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Seventh product: Document, final technical report</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eighth product: Document, final executive summary</td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Nineth product: Hi-res JPEG & native files, visuals</td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenth product: Geodatabase</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Letter of Bid

Date: _______________
Bidding No.: _______________

To:
Contracts Manager, Procurement
Chris.Mericle@CRS.org
Catholic Relief Services, USCCB

We, the undersigned, declare that:

1. We have examined and have no reservations to the Bidding Documents, including Terms of Reference herein issued.
2. We offer to execute in conformity with the Bidding Documents the following Service / Works: __;
3. The total price of our Bid, excluding any discounts offered in item (d) below is: ___________________;
4. If our bid is accepted, we commit to obtain a performance security in accordance with the Bidding Document;
5. Our firm, including any subcontractors or suppliers for any part of the Contract, have nationalities from eligible countries;
6. We, including any subcontractors or suppliers for any part of the contract, do not have any conflict of interest.
7. We are not participating, as a Bidder or as a subcontractor, in more than one bid in this bidding process.
8. We understand that you are not bound to accept the lowest evaluated bid or any other bid that you may receive, and evaluation shall be done by your Bids Committee without our presence.
9. If awarded the contract, the person named below shall act as Contractor’s Representative:

 Name: __

 In the capacity of: ___

 Signed: ___

 Duly authorized to sign the Bid for and on behalf of: _______________________

 Date: __