

Anexo III

MODELOS PREDICTIVOS DE LA INTENCIÓN MIGRATORIA

Contenido

1.	P	redicción de la migración a través de factores socio-demográficos	2
	1.1.	Análisis Factorial.	2
	1.2.	Regresión Logística Binaria	5
	1.3.	Análisis discriminante	7
	1.4.	Regresión PLS	L
2.	P	redicción de la migración a través de factores socio-económicos12	2
	2.1.	Análisis Factorial.	2
	2.2.	Regresión Logística Binaria10	ŝ
	2.3.	Regresión PLS1	7
3.	P	redicción de la migración a través de factores push/pull1	7
	3.1.	Análisis Factorial	7
	3.2.	Regresión Logística Binaria23	2
	3.3.	Análisis discriminante.	3
	3.4.	Regresión PLS2	7
4.	P	redicción de la migración a través de factores psicológicos2	7
	4.1.	Análisis Factorial2	3
	4.2.	Regresión logística binaria30)
	4.3.	Análisis discriminante33	2
	4.4.	Regresión PLS34	1
5.	Λ	Nodelo global	5

Predicción del fenómeno migratorio

Se proponen 4 modelos predictivos, mediante agrupación de factores, ya que la consideración conjunta de todos los factores que ejercen influencia en la intención migratoria limita la fiabilidad del modelo y puede dejar fuera factores importantes.

En todos los casos, se procede primero a realizar un análisis factorial para reducir la dimensionalidad y simplificar el modelo.

Tras la reducción de factores, se realiza una regresión logística a partir de la cual se puede predecir la probabilidad de migrar de una determinada persona.

Por último, mediante una regresión PLS (Partial Least Squares Regression) se consigue explicar la correlación entre los factores encontrados y las diferentes variables que los componen con la intención de migrar o no migrar.

1. PREDICCIÓN DE LA MIGRACIÓN A TRAVÉS DE FACTORES SOCIO-DEMOGRÁFICOS

En este primer modelo se toman las siguientes variables socio-demográficas y de identidad:

- Departamento
- Municipio
- ZMV
- Edad
- Género
- Idioma
- Etnia
- Estado civil
- CH1: Sabe leer y escribir
- CH2: Mayor grado de estudios
- Ocupación
- Pertenencia a religión
- Importancia de la religión

En el análisis previo de correlaciones, no se encontró correlación con el estado civil y la intención de migratoria y tampoco con la importancia a la religión.

1.1. ANÁLISIS FACTORIAL

Se realiza un primer análisis factorial. Se utiliza el método de extracción de factores por máxima verosimilitud con criterio de autovalor > 1. Para encontrar soluciones interpretables es preciso rotar los factores mediante rotación oblicua.

Se encuentra una baja comunalidad (varianza en común con el resto de variables) para "municipio" y luego tampoco resultaba en ninguno de los factores hallados, por lo que se elimina del modelo.

El determinante de la matriz de correlaciones es 0.13, lo que indica que el grado de intercorrelación de las variables es alto (al estar próximo a 0). Este valor es confirmado por la significatividad

asociada al test de esfericidad de Bartlett que es 0,000, por lo que se rechaza la hipótesis nula de incorrelación entre las variables. También el KMO (prueba de adecuación de Kaiser-Meyer Olkin) arroja un valor de 0.65, que es mayor de 0.5, por lo que la matriz de datos resulta apropiada para realizar sobre ella el análisis de factorización.

KMO y prueba de Bartlett

Medida de adecuación mue Olkin.	,644	
Prueba de esfericidad de Bartlett		
	gl	66
	Sig.	,000

Varianza total explicada

		Suma de las saturaciones al cuadrado de la rotación ^a		
Factor	Total	Total		
1	2,396	19,964	19,964	1,112
2	1,944	16,203	36,168	1,858
3	1,487	12,393	48,561	1,131
4	1,165	9,704	58,265	1,253
5	,931	7,762	66,027	
6	,794	6,620	72,647	
7	,713	5,940	78,587	
8	,701	5,843	84,430	
9	,577	4,810	89,240	
10	,486	4,048	93,288	
11	,481	4,012	97,299	
12	,324	2,701	100,000	

Método de extracción: Máxima verosimilitud.

 a. Cuando los factores están correlacionados, no se pueden sumar las sumas de los cuadrados de las saturaciones para obtener una varianza total.

Prueba de la bondad de ajuste

Chi-cuadrado	gl	Sig.
94,291	24	,000

Se encuentran 4 factores que explican el 58,265% de la varianza común. La bondad de ajuste calculada a través de una prueba de hipótesis con una distribución Chi-cuadrado tiene una significatividad asociada de 0,000, lo que nos permite verificar que los datos se ajustan al modelo.

Matriz de configuración.a

		Fac	tor	
	1	2	3	4
REL1. ¿Pertenece a alguna religión?	1,011			
REL2. Para usted, la religión en su vida, es…	-,301			
IDIOMA1. ¿Cuál es el idioma en el que aprendió a hablar?		,828		
ZMV Numércia		,754		
ETNIA1. ¿Cuál es su etnia?		,574		
TERDEP. Departamento en el que reside la persona encuestada		-,468		
GEN1. Género			-,830	
OCUP1. ¿A qué se dedica PRINCIPALMENTE?			,509	
EDAD. Edad (años de la persona)				,673
CH2. ¿Cuál es su mayor grado de estudios?				-,543
SITCIV. ¿Cual es su estado civil?				,487
CH1. ¿Sabe leer y escribir?				,343

Método de extracción: Máxima verosimilitud.

Metodo de rotación: Normalización Oblimin con Kaiser.

a. La rotación ha convergido en 5 iteraciones.

En la matriz de configuración vemos la contribución única de cada variable al factor. Los criterios de inclusión de variables han sido los valores en la matriz de cargas superiores a 0.3. El signo de los coeficientes establece el sentido de la correlación de la variable con el factor al que pertenece.

Un primer factor agrupa las variables relacionadas con la "religión", un segundo factor variables "demográficas", el tercer factor agrupa las variables "género y ocupación" y el cuarto agrupa variables de "capital humano".

Matriz de correlaciones entre los factores

Factor	1	2	3	4
1	1,000	,036	,155	-,095
2	,036	1,000	,110	-,149
3	,155	,110	1,000	,131
4	-,095	-,149	,131	1,000

Método de extracción: Máxima verosimilitud. Metodo de rotación: Normalización Oblimin con Kaiser.

Esquema de los factores encontrados:

Factor 1: Religión

REL1: Pertenencia a religión **REL2:** Importancia de la religión.

Factor 4: Capital humano

Edad: Edad

CH1: Lectura y escritura **CH2:** Nivel de estudios **SITCIV:** Situación civil

Factor 2: Características sociodemográficas

Idioma1: Idioma

ZMV: Zona de medios de vida

Etnia1: Etnia

TERDEP: Departamento

Factor 3: Ocupación y género.

OCUP1: Ocupación **GEN1:** Género

1.2. REGRESIÓN LOGÍSTICA BINARIA

Una vez establecidos los factores se procede a realizar una regresión logística binaria que intente explicar la intención migratoria en función de dichos factores.

Para ello dicotomizamos la variable dependiente en las siguientes categorías:

- 0: No tiene intención de migrar
- 1: Sí tiene intención de migrar

No se tienen en cuenta los indecisos.

En un primer análisis introduciendo todos los factores, se obtiene un modelo con los siguientes coeficientes beta, de los cuales sólo los factores 3 y 4 son significativos

Variables en la ecuación

		В	E.T.	Wald	gl	Sig.	Exp(B)
Paso 1ª	F1.RELIGION	,019	,115	,028	1	,867	1,020
	F2.DEMOGRAFÍA	-,044	,105	,180	1	,671	,957
	F3.0CUPYGENERO	,231	,105	4,898	1	,027	1,260
	F4.CAPITAL_HUMANO	-,312	,100	9,702	1	,002	,732
	Constante	-1,886	,125	229,412	1	,000	,152

a. Variable(s) introducida(s) en el paso 1: F1.RELIGION, F2.DEMOGRAFÍA, F3.OCUPYGENERO, F4. CAPITAL_HUMANO.

Realizamos una regresión por pasos hacia delante mediante el método de Wald, con una probabilidad de entrada 0.05 y de salida 0.10, obteniendo los siguientes resultados:

Pruebas omnibus sobre los coeficientes del modelo

		Chi cuadrado	gl	Sig.
Paso 2	Paso	5,159	1	,023
	Bloque	15,351	2	,000
	Modelo	15,351	2	,000

Prueba de Hosmer y Lemeshow

Paso	Chi cuadrado	gl	Sig.
2	12,742	8	,121

Resumen del modelo

Paso	-2 log de la verosimilitud	R cuadrado de Cox y Snell	R cuadrado de Nagelkerke
2	471,808 ^a	,025	,045

a. La estimación ha finalizado en el número de iteración 5 porque las estimaciones de los parámetros han cambiado en menos de ,001.

Variables en la ecuación

			C.				0	I.C. 95% para EXP(
		В	E.T.	Wald	gl	Sig.	Exp(B)	Inferior	Superior
Paso 2 ^a	F3.0CUPYGENERO	,230	,102	5,039	1	,025	1,259	1,030	1,539
	F4.CAPITAL_HUMANO	-,308	,097	10,023	1	,002	,735	,607	,889
	Constante	-1.887	.124	229.754	1	.000	.152		

a. Variable(s) introducida(s) en el paso 2: F3.OCUPYGENERO.

Tabla de clasificacióna

			Pronosticado					
		IM dicoto	Porcentaje					
	Observado		No	Sí	correcto			
Paso 2	IM dicotomizada	No	520	0	100,0			
		Sí	84	0	,0			
	Porcentaje global				86,1			

a. El valor de corte es ,500

Según la prueba ómnibus el modelo es significativo y la prueba de Hosmer y Lemeshow indica que tiene buena capacidad predictiva al ser el p-valor superior a 0.05.

Sin embargo, la R-cuadrado de Nagelkerke toma un valor muy bajo. Este valor es adecuado para comparar modelos entre sí más que para medir la bondad del ajuste del modelo en sí mismo.

La capacidad predictora del modelo, según la tabla de clasificación es del 86,1%.

Según el signo de los coeficientes en el modelo, el factor 3 de ocupación y género ejerce una influencia directa en la probabilidad de migrar y el factor 4 de capital humano una influencia inversa

Según el modelo, la función se presenta de la siguiente manera:

$$p\left(migrar\right) = \frac{1}{1 + e^{-z}}$$

Y en este caso, la variable z, se expresa de la siguiente manera:

Z= Constante+b1*OCUPYGENERO+ b2*CAPITAL HUMANO

1.3. ANÁLISIS DISCRIMINANTE

El análisis discriminante es la prueba estadística apropiada para seleccionar qué variables independientes o predictivas permiten diferenciar grupos y cuántas de estas variables son necesarias para alcanzar la mejor clasificación posible. Además permite cuantificar su poder de discriminación en relación de pertenencia de un sujeto a un grupo u otro. Por ello esta técnica se considera, una técnica de clasificación y una técnica de dependencia, de hecho su propósito es similar al del análisis de regresión logística; la principal diferencia radica en que sólo admite variables cuantitativas (las cuales pueden ser variables dummy resultado de una transformación de una variable cualitativa a una cuantitativa con valores 0 y 1).

Los objetivos básicos de esta técnica son:

- a) Explicar la influencia de un conjunto de variables cuantitativas sobre una variable cualitativa.
- b) Predecir la pertenencia de los sujetos a una de las categorías de la variable dependiente a partir de los valores registrados de las variables independientes.

Al igual que en el análisis de regresión múltiple, la combinación lineal de las variables predictivas da como resultado una variable no observada (y), pero esta variable expresada cuantitativamente no puede ser considerada como la parte explicada de la variable dependiente. Los coeficientes de discriminación aj son coeficientes de ponderación de las variables predictivas y expresan la contribución de dichas variables a la función discriminante.

Fórmula general de la función discriminante:

$$y = a_0 + a_1 x_1 + a_2 x_2 + \cdots$$

Esta función será óptima en la medida que proporcione una regla de clasificación y explique la mayor parte de la variabilidad intra-grupos.

La técnica se aplica siguiendo estos tres pasos:

- 1. Selección de las variables discriminantes (se utilizará la lambda del Wilks)
- 2. Selección de la función discriminante (se utilizará el coeficiente de autovalor)

Clasificación de los sujetos (se clasifican según el valor de la función discrimante.
Posteriormente se realiza una valoración en porcentaje de aciertos en el pronóstico de clasificación y se obtiene una tabla resumen de clasificación)

Para realizar nuestro análisis discriminante usamos un método de inclusión por pasos mediante la lambda de Wilks.

Autovalores

Función	Autovalor	% de varianza	% acumulado	Correlación canónica
1	,026ª	100,0	100,0	,159

 a. Se han empleado las 1 primeras funciones discriminantes canónicas en el análisis.

Lambda de Wilks

Contraste de las funciones	Lambda de Wilks	Chi-cuadrado	gl	Sig.
1	,975	15,379	2	,000

El autovalor nos sirve para comparar distintas funciones discriminantes, siendo mejor la que tenga el autovalor más alto. En este caso, sólo se ha calculado una función discriminante, ya que se calculan tantas funciones como categorías tiene la variable dependiente (en nuestro caso 2) menos 1.

La correlación encontrada es 0,159 y según la prueba lambda de Wilks basada en el estadístico Chicuadrado y cuya significación es inferior a 0.05, la función discriminante es válida para pronosticas a los sujetos.

En la siguiente tabla de coeficientes estandarizados, vemos qué variables se han tenido en cuenta para la construcción de la función discriminante y cuales son más influyentes en dicha función (según el valor absoluto de los coeficientes), siendo en este orden: Factor de capital humano, factor de ocupación y género. Se descartan los otros dos factores, por lo que la función discriminante corrobora los resultados obtenidos en la regresión logística.

Coeficientes estandarizados de las funciones discriminantes canónicas

	Función
	1
Factor 3. Ocupación y género	-,589
Factor 4. Capital humano	,826

Con la matriz de centroides obtenemos los valores medios de la función discriminante para cada grupo. Esta matriz es adicional a la función discriminante para conocer la pertenencia de un nuevo sujeto a un grupo u otro. Se evalúa la función discriminante para el nuevo caso y se comprueba a cuál de los centroides es más cercano su valor, lo que determinará su pertenencia.

Funciones en los centroides de los grupos

	Función
IM dicotomizada	1
No	,065
Sí	-,400

Funciones discriminantes canónicas no tipificadas evaluadas en las medias de los grupos

La función discriminante viene dada por la tabla de coeficientes no estandarizados:

Coeficientes de las funciones canónicas discriminantes

	Función
	1
Factor 3. Ocupación y género	-,499
Factor 4. Capital humano	,666
(Constante)	-,029

Coeficientes no tipificados

Siendo la función D = -0,029 -0,499 ocupación y género + 0,666 capital humano

Otra alternativa para clasificar a los nuevos sujetos es a través de las funciones de clasificación de Fisher, cuyos coeficientes aparecen en la siguiente tabla. Para cada caso se evaluarán dichas funciones asignándose el caso al grupo cuya función de clasificación tenga mayor valor discriminante.

Coeficientes de la función de clasificación

	IM dicotomizada		
	No Sí		
Factor 3. Ocupación y género	-,062	,170	
Factor 4. Capital humano	,052	-,258	
(Constante)	-,698	-,762	

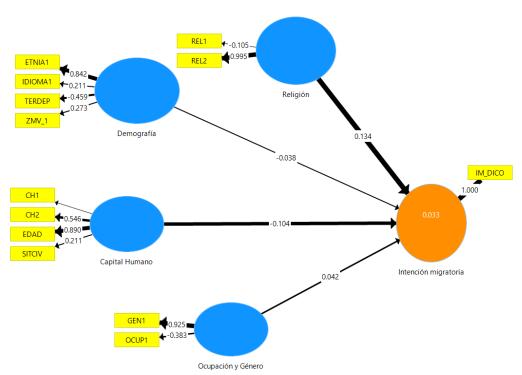
Funciones discriminantes lineales de Fisher

Según esta función se clasificarían los individuos de nuestra base de datos como muestra la siguiente captura de pantalla:

IntenciónMigr atoria1	Prob_NoMigrar1	Prob_SiMigrar2
No	,35641	,64359
No	,56209	,43791
No	,73622	,26378
No	,46207	,53793
No		
No	,37461	,62539
No	,39316	,60684
No	,28085	,71915
No	,56676	,43324
Sí	,37724	,62276
No	,36624	,63376
No	,39531	,60469
No	,61189	,38811
No	,48436	,51564
No	,50670	,49330
No	,34401	,65599
No	,65558	,34442
No	,50833	,49167
No	,70791	,29209

La primera columna refleja la intención verdadera de migrar de la persona según pregunta en la encuesta y las otras dos la probabilidad asignada por las funciones de clasificación de no migrar y sí migrar, respectivamente.

Para conocer el porcentaje de acierto, tenemos la siguiente tabla de clasificación que nos da el número de casos predichos correctamente, en nuestro caso el 64,9%.


Resultados de la clasificacióna

			Grupo de pertenencia pronosticado		
		IM dicotomizada	No	Sí	Total
Original	Recuento	No	405	198	603
		Sí	46	47	93
		Casos desagrupados	43	46	89
	%	No	67,2	32,8	100,0
		Sí	49,5	50,5	100,0
		Casos desagrupados	48,3	51,7	100,0

a. Clasificados correctamente el 64,9% de los casos agrupados originales.

1.4 REGRESIÓN PLS

El modelo se ha introducido en el software estadístico SMART PLS para poder realizar el análisis Partial Least Squares Regression structural equation modeling. Este modelo, difiere del anterior en que no contempla los componentes de forma conjunta, si no que establece las relaciones parciales de los factores con la variable dependiente y a su vez de las variables con los factores.

En este caso el componente de religión aparece como la más influyente, aunque no resultó serlo en el modelo conjunto, seguido por el de capital humano. La ocupación y género y las características demográficas apenas tienen correlación con la variable dependiente, aunque el factor de ocupación y género sí aparecía como significativo en el modelo conjunto.

2. PREDICCIÓN DE LA MIGRACIÓN A TRAVÉS DE FACTORES SOCIO-ECONÓMICOS

En este segundo modelo se toman las siguientes variables relacionadas con la situación económica:

- Situación económica familiar
- Afectación de la economía familiar por COVID
- Violencia en comunidad
- Desastres en comunidad
- Índice de pobreza
- Índice de seguridad alimentaria
- Percepción de remesas
- Afectación de la recepción de remesas por COVID
- Conocimiento de CRs
- Participación en proyectos CRs
- Participación en otros proyectos
- Años residiendo en comunidad

En el análisis previo de correlaciones, no se encontró correlación con la frecuencia de recepción de remesas, con violencia en la comunidad ni con todas las relaciones con el conocimiento de CRS, participación en proyectos ni con años residiendo en la comunidad.

2.1. ANÁLISIS FACTORIAL

Se realiza un primer análisis factorial. Se utiliza el método de extracción de factores por máxima verosimilitud con criterio de autovalor > 1. Para encontrar soluciones interpretables es preciso rotar los factores mediante rotación oblicua.

Se encuentra una baja comunalidad para "violencia en la comunidad", "desastres naturales" y "años residiendo en la comunidad", por lo que se eliminan del modelo.

El determinante de la matriz de correlaciones es 0.019, lo que indica que el grado de intercorrelación de las variables es alto. La prueba de esfericidad de Bartlett tiene una significatividad asociada de 0,000 y el KMO tiene un valor de 0.673, por lo que las variables están correlacionadas y la matriz de datos es apropiada para el análisis factorial.

KMO y prueba de Bartlett

Medida de adecuación muestral de Kaiser-Meyer- Olkin.		,673
Prueba de esfericidad de Chi-cuadrado Bartlett aproximado		319,206
	gl	45
	Sig.	,000

Varianza total explicada

	Autovalores iniciales			Suma de las saturaciones al cuadrado de la rotación ^a
Fastar	Total	% de la varianza	% acumulado	Total
Factor 1	3,026	30,264	30,264	2,709
2	1,935	19,355	49,618	1,513
3	1,401	14,007	63,626	,999
4	,981	9,812	73,438	,555
I '				
5	,817	8,166	81,603	
6	,649	6,487	88,091	
7	,549	5,486	93,577	
8	,297	2,974	96,551	
9	,218	2,175	98,727	
10	,127	1,273	100,000	

Método de extracción: Máxima verosimilitud.

 a. Cuando los factores están correlacionados, no se pueden sumar las sumas de los cuadrados de las saturaciones para obtener una varianza total.

Prueba de la bondad de ajuste

Chi-cuadrado	gl	Sig.
22,453	18	,212

Se encuentran 3 factores que explican el 63,626% de la varianza común. La bondad de ajuste calculada a través de una prueba de hipótesis con una distribución Chi-cuadrado tiene una significatividad asociada de 0,212, por lo que los datos no se ajustan demasiado bien al modelo.

Se ha probado eliminando las variables correspondientes al tercer factor, que son las relacionadas con proyectos CRs que no estaban correlacionadas con la intención de migrar, pero los resultados que se han obtenido son similares.

(También se ha probado agrupar este conjunto de variables con las del punto anterior para establecer los factores, pero de esta forma ningún factor resultaba en la regresión logística binaria.)

En la matriz de configuración vemos la contribución única de cada variable al factor. Los criterios de inclusión de variables han sido los valores en la matriz de cargas superiores a 0.3.

Un primer factor agrupa las variables relacionadas con "remesas y seguridad alimentaria", un segundo factor variables relacionadas con la "situación financiera", el tercer factor agrupa las variables relacionadas con participación en proyectos, "capital social".

En el siguiente esquema vemos los factores resultantes:

Factor 5: Remesas y seguridad alimentaria.

CFINREM1: Recepción de remesas

CFINREM2: Frecuencia de recepción de remesas **CFINREMCOVID:** Afectación de la situación producida por el COVID a la recepción de

remesas.

FIES2: Escala de seguridad alimentaria estandarizada para la muestra.

Factor 6: Situación financiera

CFIN1: Situación económica familiar **CFINCOVID:** Afectación del COVID a la situación económica familiar.

SPS: Índice de pobreza

Factor 7: Capital social.

INST1: Conocimiento CRs

INST2: Participación en proyectos CRs

INST4: Participación en otros

proyectos.

Matriz de configuración.ª

Matriz de	Factor			
	1	2	3	
CFinREM2. En caso de haber respondido Si a la anterior pregunta, ¿con qué frecuencia recibía o recibe remesas?	,958			
CFinREM1. En los últimos doce meses, ¿su hogar ha recibido remesas desde el extranjero?	-,891			
CFinREMCOVID. ¿Cómo afecta la pandemia de COVID-19 a la recepción de remesas en su familia?	,830			
Escala FIES - estandarizada para la muestra	-,422			
CFin1. ¿Cómo percibe la actual situación económica de su familia?		,855		
CFinCOVID. ¿De qué forma le afecta la enfermedad del Coronavirus en la economía de su familia?		-,780		
SPS. Simple Poverty Scorecard (Agrupada)		,331		
INST1. ¿Conoce a CRS o alguna de sus entidades socias (ADIPO, Pastoral Social, Caritas)? ¿Conoce a las instituciones Caritas, Anacafé o ADEGO? Si la respuesta fuera no, o no sabe, pasar a la pregunta número 29			,660	
INST2. En caso de que haya respondido SI a la anterior pregunta, ¿ha participado en los últimos 12 meses en algún proyecto de estas instituciones?			,484	
INST4. En los últimos 12 meses, ¿ha participado en algún otro proyecto de desarrollo de su comunidad (educación, salud, producción agrícola, medio ambiente, etc)?			,341	

Método de extracción: Máxima verosimilitud. Metodo de rotación: Normalización Oblimin con Kaiser.

a. La rotación ha convergido en 4 iteraciones.

Matriz de correlaciones entre los factores

Factor	1	2	3
1	1,000	,115	-,165
2	,115	1,000	,078
3	-,165	,078	1,000

Método de extracción: Máxima

verosimilitud.

Metodo de rotación: Normalización

Oblimin con Kaiser.

2.2 REGRESIÓN LOGÍSTICA BINARIA

Una vez establecidos los factores se procede a realizar una regresión logística binaria que intente explicar la intención migratoria en función de dichos factores.

En un primer análisis introduciendo todos los factores, se obtiene un modelo con los siguientes coeficientes beta (vemos que ningún factor resulta significativo)

Variables en la ecuación

								I.C. 95% pa	ara EXP(B)
		В	E.T.	Wald	gl	Sig.	Exp(B)	Inferior	Superior
Paso 1 ^a	F5.REMESAS	,061	,367	,028	1	,867	1,063	,518	2,181
	F6.ECONOMIA	-,139	,322	,187	1	,666	,870	,463	1,636
	F7.CAPITAL_SOCIAL	-,605	,373	2,628	1	,105	,546	,263	1,135
	Constante	-2,168	,424	26,113	1	,000	,114		

a. Variable(s) introducida(s) en el paso 1: F5.REMESAS, F6.ECONOMIA, F7.CAPITAL_SOCIAL.

Si realizamos una regresión por pasos hacia delante de Wald, todos los factores se eliminan.

Tampoco se obtienen buenos resultados en la regresión con las variables sin agrupar en factores.

Y tampoco con el análisis discriminante.

(También se ha probado introduciendo las preguntas de los índices de seguridad alimentaria y pobreza por independiente, sin tener en cuenta los índices.)

2.3 REGRESIÓN PLS

En este caso la mayor correlación es la dada entre la variable dependiente y la componente de proyectos.

3. PREDICCIÓN DE LA MIGRACIÓN A TRAVÉS DE FACTORES PUSH/PULL

Tomamos los ítems sobre arraigo, expulsión del origen, atracción destino y tránsito:

- Atracción (Items AT1-AT4)
- Expulsión (Items EX1- EX6)
- Tránsito (Items TRAN1-TRAN4)
- Arraigo (Items ARR1-ARR10)

3.1. ANÁLISIS FACTORIAL

Se realiza un primer análisis factorial. Se utiliza el método de extracción de factores por máxima verosimilitud con criterio de autovalor > 1. Para encontrar soluciones interpretables es preciso rotar los factores mediante rotación oblicua.

Se encuentra una baja comunalidad para "EX2" (relacionado con el machismo en la comunidad), y "ARR9" (relacionado con la pertenencia a comités), por lo que se eliminan del modelo.

El determinante de la matriz de correlaciones es 0.032, lo que indica que el grado de intercorrelación de las variables es alto. La prueba de esfericidad de Bartlett tiene una significatividad asociada de 0,000 y el KMO tiene un valor de 0.649, por lo que las variables están correlacionadas y la matriz de datos es apropiada para el análisis factorial.

KMO y prueba de Bartlett

Medida de adecuación mue Olkin.	,649	
Prueba de esfericidad de Bartlett	Chi-cuadrado aproximado	2401,378
	gl	231
	Sig.	,000

Prueba de la bondad de ajuste

Chi-cuadrado	gl	Sig.
324,852	131	,000

Varianza total explicada

		Suma de las saturaciones al cuadrado de la rotación ^a		
	T-4-1	% de la	0/	T-4-1
Factor	Total	varianza	% acumulado	Total
1	2,435	11,070	11,070	1,940
2	2,329	10,588	21,657	1,484
3	1,840	8,366	30,023	1,327
4	1,703	7,740	37,763	1,142
5	1,310	5,955	43,718	,790
6	1,156	5,257	48,974	
7	,984	4,473	53,448	
8	,956	4,345	57,792	
9	,927	4,212	62,004	
10	,908	4,125	66,130	
11	,869	3,951	70,081	
12	,863	3,922	74,002	
13	,767	3,485	77,487	
14	,717	3,260	80,747	
15	,679	3,085	83,832	
16	,634	2,880	86,712	
17	,617	2,804	89,516	
18	,570	2,593	92,109	
19	,548	2,491	94,600	
20	,468	2,129	96,729	
21	,435	1,979	98,708	
22	,284	1,292	100,000	

Método de extracción: Máxima verosimilitud.

 a. Cuando los factores están correlacionados, no se pueden sumar las sumas de los cuadrados de las saturaciones para obtener una varianza total.

Se encuentran 5 factores que explican el 43,718% de la varianza común. La bondad de ajuste calculada a través de una prueba de hipótesis con una distribución Chi-cuadrado tiene una significatividad asociada de 0,000, por lo que los datos se ajustan bien al modelo.

En la matriz de configuración vemos la contribución única de cada variable al factor. Los criterios de inclusión de variables han sido los valores en la matriz de cargas superiores a 0.22.

El primer factor agrupa las variables de "atracción", el segundo y el tercero subdividen el grupo de variables de arraigo. El segundo factor relaciona las variables de apego a la comunidad "arraigo 1" y el tercero relaciona variables de añoranza o tristeza al pensarse lejos de la comunidad "arraigo 2". El cuarto factor comprende las variables de "expulsión" y el quinto de "tránsito".

Matriz de configuración.ª

		configuraci			
	4	2	Factor	4	-
AT3. En otro país	.853		3	4	5
dispondré de mejores	,000				
oportunidades para trabajar					
AT4. En otro país podré	,811				
ganar dinero para ayudar	,011				
a mi familia en					
Guatemala	500				
AT1. Tengo mucha curiosidad por conocer	,500				
otros países y culturas					
AT2. En otro país podré	,470				
vivir con más seguridad		740			
ARR3. Me siento muy apegado a mis amigos y		,743			
vecinos de la comunidad					
ARR2. Me siento muy		,558			
apegado a mi familia en mi comunidad					
ARR1. Participo en las		,396			
actividades sociales de		,,,,,,			
mi comunidad					
ARR10. Confío mucho en las personas de mi		,365			
comunidad					
ARR5. En mi comunidad		,354			
siempre encuentro alguien que me ayuda					
con mis problemas					
ARR4. Todas las		,285			
personas que son					
importantes para mi se encuentran en mi					
comunidad					
ARR7. Si tuviera que			-,760		
mudarme, me sentiría triste					
ARR6. Extraño mi			-,698		
comunidad cuando estoy			-,050		
fuera de ella					
ARR8. Mi comunidad es mi lugar favorito para vivir			-,347		
EX3. La situación				,696	
económica de mi familia				,080	
es mala					
EX4. Mi ingresos económicos no alcanzan				,423	
EX1. En Guatemala me				415	
siento discriminado/a				,415	
EX5. Cada año es más				,360	
seco y mi familia pierde sus cosechas					
				275	
EX6. Me siento muy poco valorado en mi				,275	
comunidad/municipio					
TRAN1. Si fuera un					,557
emigrante me darían mucho miedo los abusos					
en el camino hacia los					
Estados					
TRAN4. Prefiero guerdarme en mi					,424
comunidad antes que					
emigrar y contagiarme					
por el COVID19					222
TRAN2. Tenía pensado migrar, pero no lo hago					,369
por miedo a que me					
detengan en EEUU					
TRAN3. Ahora es mejor no migrar porque no se					,230
encuentra trabajo en los					
Estados					
Método de extracción: Máxin		A			

Método de extracción: Máxima verosimilitud. Metodo de rotación: Normalización Oblimin con Kaiser.

a. La rotación ha convergido en 7 iteraciones.

Esquema de los factores:

Factor 8: Atracción

AT1: Curiosidad por otros países y culturas

AT2: Mayor seguridad en otro país. AT3: Mejores oportunidades de trabajo.

AT4: Dinero.

Factor 9: Arraigo 1

ARR1: Participación en actividades de la

comunidad

ARR2: Apego a familia y comunidad **ARR3:** Apego a amigos y vecinos

ARR4: Personas importantes en comunidad

ARR5: Apoyo en comunidad

ARR10: Confianza en personas de la comunidad

Factor 10: Arraigo 2

ARR6: Añoranza de la comunidad

ARR7: Tristeza al pensar en mudarse de la

comunidad

ARR8: Predilección por comunidad

Factor 11: Expulsión

EX1: Discriminación

EX3: Mala economía familiar **EX4:** Bajo nivel de ingresos

EX5: Años secos y pérdida de cosechas **EX6:** Poca valoración dentro de comunidad

Factor 12: Tránsito

TRAN1: Miedo a abusos en tránsito

TRAN2: Miedo a detención **TRAN3:** No trabajo en destino

TRAN4: Miedo a contagio por COVID.

Matriz de correlaciones entre los factores

Factor	1	2	3	4	5
1	1,000	,020	,038	,071	,050
2	,020	1,000	-,236	,048	-,025
3	,038	-,236	1,000	-,028	-,201
4	,071	,048	-,028	1,000	,114
5	,050	-,025	-,201	,114	1,000

Método de extracción: Máxima verosimilitud.

Metodo de rotación: Normalización Oblimin con Kaiser.

3.2 REGRESIÓN LOGÍSTICA BINARIA

Procedemos a realizar una regresión logística binaria que explique la intención migratoria dicotomizada en función de los factores push and pull.

En un primer análisis introduciendo los 5 factores, se obtiene un modelo donde ni los factores de arraigo ni el de expulsión resultan significativos al 5% de significación.

Variables en la ecuación

		В	E.T.	Wald	gl	Sig.	Exp(B)
Paso 1 ^a	F8.ATRACCION	1,756	,328	28,613	1	,000	5,791
	F9.ARRAIGO1	,013	,108	,014	1	,906	1,013
	F10.ARRAIGO2	,172	,094	3,362	1	,067	1,188
	F11.EXPULSION	,004	,097	,002	1	,964	1,004
	F12.TRANSITO	-,154	,074	4,307	1	,038	,857
	Constante	-2,698	,256	111,244	1	,000	,067

a. Variable(s) introducida(s) en el paso 1: F8.ATRACCION, F9.ARRAIGO1, F10.ARRAIGO2, F11. EXPULSION, F12.TRANSITO.

Si realizamos una regresión por pasos hacia delante de Wald con una probabilidad de entrada 0,05 y de salida 0,10, obtenemos un modelo que es significativo según la prueba onmibus, con una R-cuadrado de Nagelkerke igual a 0.225. La prueba de Hosmer y Lemeshow, cuyo p-valor es superior a 0.05 indica que el modelo es apropiado para hacer predicciones. El 87,2% de los valores predichos son acertados.

Pruebas omnibus sobre los coeficientes del modelo

			Chi cuadrado	gl	Sig.
	Paso 2	Paso	5,271	1	,022
١		Bloque	88,370	2	,000
l		Modelo	88,370	2	,000

Resumen del modelo

			R cuadrado
	-2 log de la	R cuadrado	de
Paso	verosimilitud	de Cox y Snell	Nagelkerke
2	442,882 ^a	,122	,225

 a. La estimación ha finalizado en el número de iteración 7 porque las estimaciones de los parámetros han cambiado en menos de ,001.

Prueba de Hosmer y Lemeshow

Paso	Chi cuadrado	gl	Sig.
2	13,916	8	,084

Tabla de clasificacióna

			Pronosticado			
			IM dicotomizada		Porcentaje	
	Observado		No	Sí	correcto	
Paso 2	IM dicotomizada	No	588	1	99,8	
		Sí	86	4	4,4	
	Porcentaje global				87,2	

a. El valor de corte es ,500

Variables en la ecuación

		В	E.T.	Wald	gl	Sig.	Exp(B)
Paso 2ª	F8.ATRACCION	1,737	,321	29,370	1	,000	5,681
	F12.TRANSITO	-,169	,073	5,405	1	,020	,844
	Constante	-2,676	,251	113,400	1	,000	,069

a. Variable(s) introducida(s) en el paso 2: F12.TRANSITO.

Los factores que permanecen en la ecuación son las de atracción y tránsito, el primero se relaciona de forma directa con la intención de migrar y el segundo de forma inversa.

El valor del exp(b) indica que una persona que se sienta atraída por el destino tendrá 5.681 veces más probabilidad de migrar que otra persona que no lo haga, mientras que una persona que tenga miedo al tránsito tendrá 1.1848 (=1/0.844) veces menos probabilidad de migrar que una persona que no le tenga miedo al tránsito, o lo que es lo mismo, tendrá un 18.48% menos probabilidad de migrar.

Según el modelo, la función se presenta de la siguiente manera:

$$p\left(migrar\right) = \frac{1}{1 + e^{-z}}$$

Y en este caso, la variable z, se expresa de la siguiente manera:

Z= Constante+b1*ATRACCION+ b2*TRANSITO

Se ha probado a realizar el mismo modelo dando a la regresión por pasos una probabilidad de entrada de 0.1 y de salida de 0.15. De esta forma, el factor de "Arraigo 2" también permanece en la ecuación, pero apenas apunta la R-cuadrado de Nagelkerke ni mejora la capacidad predictora del modelo.

3.3 ANÁLISIS DISCRIMINANTE

Autovalores

				Correlación
Función	Autovalor	% de varianza	% acumulado	canónica
1	,106ª	100,0	100,0	,309

 a. Se han empleado las 1 primeras funciones discriminantes canónicas en el análisis.

Lambda de Wilks

Contraste de las funciones	Lambda de Wilks	Chi-cuadrado	gl	Sig.
1	,904	67,983	2	,000

La correlación encontrada es 0,309 y según la prueba lambda de Wilks basada en el estadístico Chicuadrado y cuya significación es inferior a 0.05, la función discriminante es válida para pronosticas a los sujetos.

Coeficientes estandarizados de las funciones discriminantes canónicas

	Función
	1
Factor 8. Atracción destino	,918
Factor 12. Tránsito	-,459

Según la tabla de coeficientes estandarizados, el factor que más peso tiene en la función discriminante es el factor de "atracción", seguido por "tránsito". Se ha empleado el método hacia delante de Wald y se han eliminado los otros 3 factores, igual que ha ocurrido en la regresión logística.

Coeficientes estandarizados de las funciones discriminantes canónicas

	Función
	1
Factor 8. Atracción destino	,918
Factor 12. Tránsito	-,459

Funciones en los centroides de los grupos

	Función
IM dicotomizada	1
No	-,127
Sí	,831

Funciones discriminantes canónicas no tipificadas evaluadas en las medias de los grupos

Coeficientes de las funciones canónicas discriminantes

	Función
	1
Factor 8. Atracción destino	,854
Factor 12. Tránsito	-,320
(Constante)	,039

Coeficientes no tipificados

La función discriminante es D = 0,039 +0,854 atracción destino - 0,320 tránsito

Las funciones de clasificación se construyen con los coeficientes de la siguiente tabla:

Coeficientes de la función de clasificación

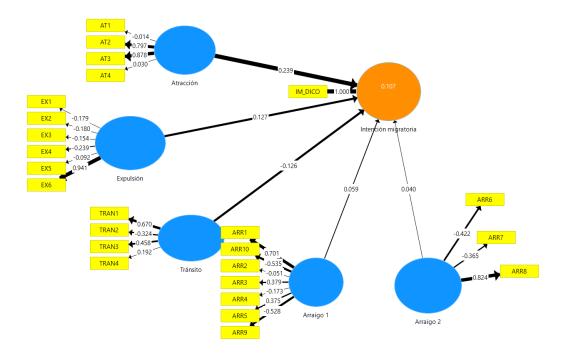
	IM dicotomizada	
	No	Sí
Factor 8. Atracción destino	-,157	,661
Factor 12. Tránsito	,029	-,278
(Constante)	-,708	-1,007

Funciones discriminantes lineales de Fisher

En la siguiente captura de pantalla tenemos un ejemplo de cómo se clasificarían las personas de nuestra base de datos según estas funciones de clasificación.

La primera columna refleja la intención verdadera de migrar de la persona según pregunta en la encuesta y las otras dos la probabilidad asignada por las funciones de clasificación de no migrar y sí migrar, respectivamente.

IntencionMigr agoria	Prob_NoMigrar	Prob_SiMigrar
No	,71102	,28898
No	,48783	,51217
No	,56363	,43637
No	,55217	,44783
No	,77664	,22336
No	,50249	,49751
No	,64998	,35002
No	,53574	,46426
No	,49522	,50478
Sí	,34910	,65090
No	,58905	,41095
	,52524	,47476
No	,52179	,47821
No	,19492	,80508
No	,82360	,17640
No	,53414	,46586
No	,83575	,16425
No	,91474	,08526
No	,79463	,20537
No	,48026	,51974
No	,79216	,20784
No	,57848	,42152
No	,89448	,10552
No	,89087	,10913
No	,84549	,15451


El pronóstico de aciertos es de 63,2% como vemos en la tabla de clasificación:

Resultados de la clasificacióna

			Grupo de pertenencia pronosticado		
		IM dicotomizada	No	Sí	Total
Original	Recuento	No	361	228	589
		Sí	22	68	90
		Casos desagrupados	37	52	89
	%	No	61,3	38,7	100,0
		Sí	24,4	75,6	100,0
		Casos desagrupados	41,6	58,4	100,0

a. Clasificados correctamente el 63,2% de los casos agrupados originales.

3.4 REGRESIÓN PLS

Según la regresión por mínimos cuadrados parciales las variables relacionadas con el arraigo no tienen demasiada correlación con la intención migratoria.

El factor que mayor correlación tiene en el factor "atracción", seguido por "expulsión" y "tránsito".

4. PREDICCIÓN DE LA MIGRACIÓN A TRAVÉS DE FACTORES PUSH/PULL

Tomamos los ítems sobre autoeficacia, optimismo y lotus de control.

- Autoeficacia (Items AUT1-AT4)
- Optimismo (Items OPT1- OPT8)
- Lotus Control (Items LC1-LC4)

En estos bloques hay preguntas espejo que están planteadas de forma inversa, por lo que trabajamos con ellas recodificadas de forma directa.

4.1 ANÁLISIS FACTORIAL

Se realiza un primer análisis factorial. Se utiliza el método de extracción de factores por máxima verosimilitud con criterio de autovalor > 1. Para encontrar soluciones interpretables es preciso rotar los factores mediante rotación oblicua.

Se encuentra una baja comunalidad para "OPT2" (optimismo acerca del futuro), "OPT3" (No desánimo), "OPT8" (tranquilidad y complicaciones) y "LC2" (atribuye logro a suerte), por lo que se eliminan del modelo.

El determinante de la matriz de correlaciones es 0.253, lo que indica que el grado de intercorrelación de las variables es alto. La prueba de esfericidad de Bartlett tiene una significatividad asociada de 0,000 y el KMO tiene un valor de 0.741, por lo que las variables están correlacionadas y la matriz de datos es apropiada para el análisis factorial.

KMO y prueba de Bartlett

Medida de adecuación muestral de Kaiser-Meyer- Olkin.		,741
Prueba de esfericidad de Bartlett	Chi-cuadrado aproximado	1065,617
	gl	66
	Sig.	,000

Varianza total explicada

	Autovalores iniciales			Suma de las saturaciones al cuadrado de la rotación ^a
Factor	Total	% de la varianza	% acumulado	Total
1	2,600	21,668	21,668	1,810
2	1,645	13,711	35,379	,900
3	1,142	9,516	44,894	1,228
4	,992	8,271	53,165	
5	,891	7,424	60,589	
6	,817	6,809	67,398	
7	,798	6,649	74,047	
8	,724	6,037	80,083	
9	,679	5,660	85,743	
10	,640	5,335	91,079	
11	,572	4,770	95,849	
12	,498	4,151	100,000	

Método de extracción: Máxima verosimilitud.

 a. Cuando los factores están correlacionados, no se pueden sumar las sumas de los cuadrados de las saturaciones para obtener una varianza total.

Prueba de la bondad de ajuste

Chi-cuadrado	gl	Sig.
57,607	33	,005

Se encuentran 3 factores que explican el 43,192% de la varianza común. La bondad de ajuste calculada a través de una prueba de hipótesis con una distribución Chi-cuadrado tiene una significatividad asociada de 0,005, por lo que los datos se ajustan bien al modelo.

En la matriz de configuración vemos la contribución única de cada variable al factor. Los criterios de inclusión de variables han sido los valores en la matriz de cargas superiores a 0.26.

El primer factor agrupa las variables de optimismo y autoeficacia positiva planteadas de forma directa, "optimismo y autoeficacia 1", el segundo factor agrupa variables de optimismo y autoeficacia planteadas de forma inversa "optimismo y autoeficacia 2" y el tercero variables de "lotus de control".

Matriz de configuración.a

		Factor	
	1	2	3
OPT5. Soy una persona con mucha imaginación	,736		
OPT7. Siempre tengo muchas ideas	,713		
OPT6. Me gusta mucho probar y vivir cosas nuevas	,462		
AUT2. Si no puedo hacer un trabajo a la primera, lo intento hasta que lo consigo	,350		
AUT1. Cuando hago planes estoy seguro/a que puedo lograrlos	,270		
AUT3_INV		,589	
AUT4_INV		,468	
OPT1_INV		,460	
OPT4_INV		,269	
LC3. Lo que yo pueda conseguir en mí vida tendrá mucho que ver con el empeño que yo ponga			,586
LC4. Si decidiera migrar estoy seguro que lo que consiga va a depender de mi esfuerzo'Si decidiera migrar estoy seguro que lo que consiga va a depender de mi esfuerzo			,569
LC1_INV			,293

Método de extracción: Máxima verosimilitud.

Metodo de rotación: Normalización Oblimin con Kaiser.

a. La rotación ha convergido en 5 iteraciones.

En el siguiente esquema vemos los factores resultantes:

Factor 13: Optimismo y autoeficacia 1

OPT5: Persona con imaginación **OPT6:** Gusto por probar cosas nuevas **OPT7:** Persona con muchas ideas **AUT1:** Seguridad en sí mismo/a

AUT2: Perseverancia

Factor 15: Lotus de control

LC1_INV: Control sobre acontecimientos de la

vida

LC3: Conseguir cosas con empeño

LC4: Consecuciones a través de esfuerzo.

Factor 14: Optimismo y autoeficacia 2

OPT1_INV: Esperar que las cosas vayan como

uno/a quiera

OPT4_INV: Ver el lado bueno de las cosas **AUT3_INV:** Resolución ante problemas

inesperados

AUT4_INV: Intentar cosas complicadas

Matriz de correlaciones entre los factores

Factor	1	2	3
1	1,000	,014	,451
2	,014	1,000	,102
3	,451	,102	1,000

Método de extracción: Máxima

verosimilitud.

Metodo de rotación: Normalización

Oblimin con Kaiser.

4.2 REGRESIÓN LOGÍSTICA BINARIA

En un primer modelo introduciendo los 3 factores, obtenemos que sólo el primero, que comprende las preguntas sobre optimismo y autoeficacia preguntadas de forma positiva, es significativo.

Variables en la ecuación

		В	E.T.	Wald	gl	Sig.	Exp(B)
Paso 1 ^a	F13.0PT_Y_AUT1	,323	,134	5,759	1	,016	1,381
	F14.OPT_Y_AUT2	-,157	,084	3,539	1	,060	,854
	F15.LOTUSCONTROL	,152	,127	1,430	1	,232	1,164
	Constante	-1,951	,122	257,431	1	,000	,142

a. Variable(s) introducida(s) en el paso 1: F13.OPT_Y_AUT1, F14.OPT_Y_AUT2, F15. LOTUSCONTROL.

Realizamos una regresión por pasos hacia delante por el método de Wald, con una probabilidad de entrada de 0.05 y una probabilidad de salida de 0.1.

El modelo es significativo según la prueba ómnibus. Aunque la R-cuadrado de Nagelkerke es cercana a 0, la capacidad del modelo de pronosticar correctamente es del 86,7% y la prueba de Hosmer y Lemeshow, cuyo p-valor > 0.05 indica que el modelo es apropiado.

Pruebas omnibus sobre los coeficientes del modelo

			Chi cuadrado	gl	Sig.
Pas	o 1	Paso	8,530	1	,003
		Bloque	8,530	1	,003
		Modelo	8,530	1	,003

Resumen del modelo

			R cuadrado
D	-2 log de la verosimilitud	R cuadrado de Cox y Snell	de Nagelkerke
Paso	verosimilituu	ue Cox y Shell	ivageikeike
1	533,933 ^a	,012	,023

 a. La estimación ha finalizado en el número de iteración 5 porque las estimaciones de los parámetros han cambiado en menos de ,001.

Prueba de Hosmer y Lemeshow

Paso	Chi cuadrado	gl	Sig.
1	5,097	8	,747

Tabla de clasificacióna

		Pronosticado				
			IM dicotomizada		Porcentaje	
	Observado		No	Sí	correcto	
Paso 1	IM dicotomizada	No	600	0	100,0	
		Sí	92	0	0,	
	Porcentaje global				86,7	

a. El valor de corte es ,500

Únicamente nos queda el primer factor en la ecuación, relacionado con el optimimo y autoeficacia.

Variables en la ecuación

		В	E.T.	Wald	gl	Sig.	Exp(B)
Paso 1 ^a	F13.0PT_Y_AUT1	,340	,132	6,633	1	,010	1,404
	Constante	-1,920	,118	266,038	1	,000	,147

a. Variable(s) introducida(s) en el paso 1: F13.OPT_Y_AUT1.

Según el modelo, la función se presenta de la siguiente manera:

$$p\left(migrar\right) = \frac{1}{1 + e^{-z}}$$

Y en este caso, la variable z, se expresa de la siguiente manera:

Z= Constante+b1*Optimismo y autoeficacia 1

El signo del coeficiente b es positivo, indicando una relación directa entre las variables de optimismo y autoeficacia del primer bloque con la intención migratoria.

4.3 ANÁLISIS DISCRIMINANTE

Autovalores

Función	Autovalor	% de varianza	% acumulado	Correlación canónica
1	,010ª	100,0	100,0	,101

a. Se han empleado las 1 primeras funciones discriminantes canónicas en el análisis.

Lambda de Wilks

Contraste de las funciones	Lambda de Wilks	Chi-cuadrado	gl	Sig.
1	,990	7,018	1	,008

La correlación encontrada es 0,101 y según la prueba lambda de Wilks basada en el estadístico Chicuadrado y cuya significación es inferior a 0.05, la función discriminante es válida para pronosticas a los sujetos.

Coeficientes estandarizados de las funciones discriminantes canónicas

	Función
	1
Factor 13. Optimismo y autoeficacia preguntas directas	1,000

Según la tabla de coeficientes estandarizados, nos queda un único factor en la función discriminante, que coincide con el factor de la regresión logística binaria.

Coeficientes de las funciones canónicas discriminantes

	Función
	1
Factor 13. Optimismo y autoeficacia preguntas directas	,836
(Constante)	,019

Coeficientes no tipificados

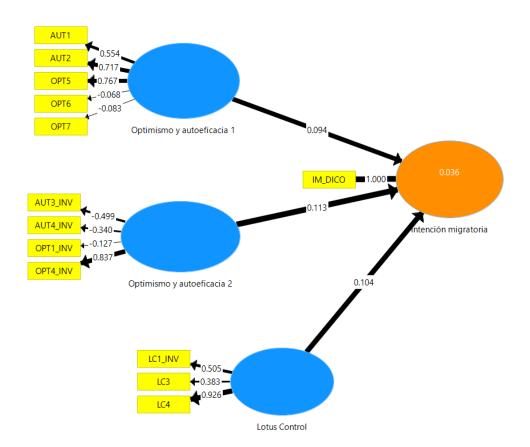
La función discriminante es D = 0,019 +0,836 optimismo y autoeficacia

Las funciones de clasificación se construyen con los coeficientes de la siguiente tabla:

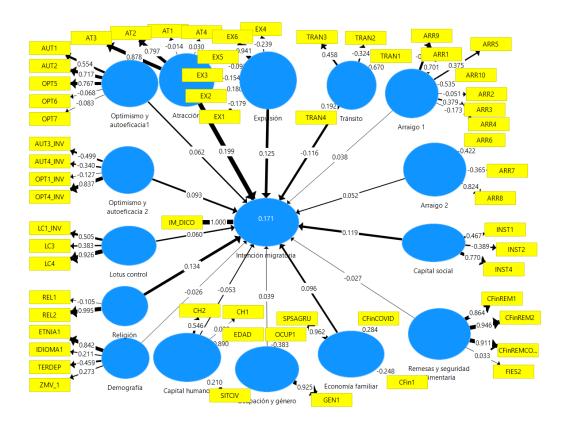
Coeficientes de la función de clasificación

	IM dicotomizada		
	No	Sí	
Factor 13. Optimismo y autoeficacia preguntas directas	-,049	,200	
(Constante)	-,695	-,722	

Funciones discriminantes lineales de Fisher

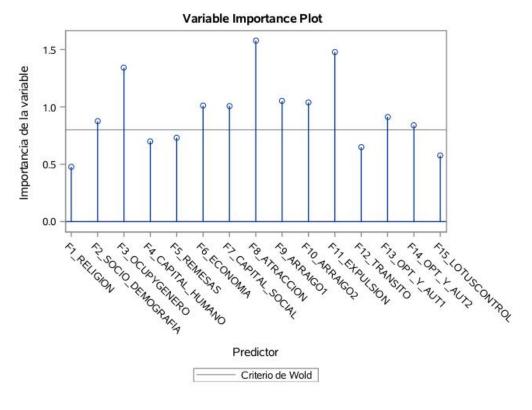

Resultados de la clasificación^a

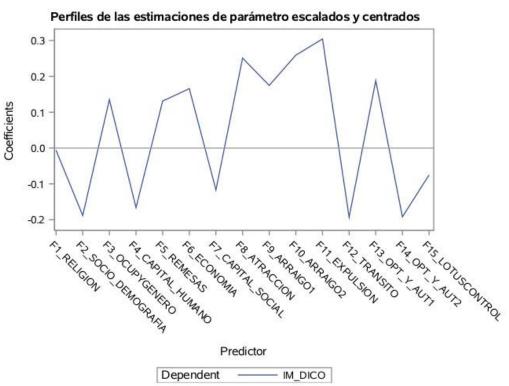
			Grupo de pertenencia pronosticado		
		IM dicotomizada	No	Sí	Total
Original	Recuento	No	200	400	600
		Sí	16	76	92
		Casos desagrupados	24	65	89
	%	No	33,3	66,7	100,0
		Sí	17,4	82,6	100,0
		Casos desagrupados	27,0	73,0	100,0


a. Clasificados correctamente el 39,9% de los casos agrupados originales.

La capacidad de pronosticar del modelo no es muy buena, sólo un 39.9% de los pronósticos son acertados.

4.4 REGRESIÓN PLS




5. MODELO GLOBAL

	MEDIA DE LA MUESTRA (M)	DESVIACIÓN ESTÁNDAR (STDEV)	ESTADÍSTICOS T (O/STDEV)	P VALOR ES
Arraigo 1 -> Intención migratoria	0.006	0.068	0.559	0.577
Arraigo 2 -> Intención migratoria	-0.011	0.086	0.602	0.548
Atracción -> Intención migratoria	0.197	0.027	7.260	0.000
Capital humano -> Intención migratoria	-0.058	0.027	1.954	0.051
Capital social -> Intención migratoria	0.066	0.121	0.982	0.326
Demografía -> Intención migratoria	-0.006	0.049	0.525	0.600
Economía familiar -> Intención migratoria	0.078	0.061	1.561	0.119
Expulsión -> Intención migratoria	0.092	0.098	1.276	0.202
Lotus control -> Intención migratoria	0.061	0.028	2.123	0.034
Ocupación y género -> Intención migratoria	0.027	0.046	0.847	0.398
Optimismo y autoeficacia 2 -> Intención migratoria	-0.020	0.111	0.836	0.403
Optimismo y autoeficacia1 -> Intención migratoria	0.063	0.027	2.305	0.022
Religión -> Intención migratoria	0.119	0.055	2.449	0.015
Remesas y seguridad alimentaria -> Intención migratoria	-0.028	0.041	0.657	0.511
Tránsito -> Intención migratoria	-0.129	0.069	1.677	0.094

Sólo resultan significativas para el modelo: atracción destino, lotus control, optimismo y autoeficacia y religión.

